疾病小鼠模型系列之肺癌篇


恶性肿瘤的发生率与死亡率逐年上升,已成为威胁人类健康的主要因素之一。而肿瘤动物模型的建立为研究肿瘤发生与转移的机制、筛选和评价抗肿瘤药物的药效提供了有力的工具。


今天我们主要介绍目前常用的肺癌基因工程小鼠模型及其应用。

 

肺癌作为全球肿瘤发病率和死亡率最高的癌种,一直备受医疗界研究者们的广泛关注。肺癌主要分为非小细胞肺癌(non small cell lung cancer, NSCLC)和小细胞肺癌(small celllung cancer, SCLC),其中非小细胞肺癌约占肺癌的80~85%。[1]


非小细胞肺癌模型

非小细胞肺癌主要包含腺癌、鳞状细胞癌和大细胞肺癌,还包含不太常见的类型例如腺鳞癌和肉瘤样癌。在非小细胞肺癌中,发现很多驱动突变,常见的驱动突变包括Kras突变、EGFR突变、FGFR1扩增、ALK重排、HER2突变、MET扩增、BRAF突变等[1]。研究人员对肺癌的多个突变进行探究,将肺癌中发现的突变进入引入到小鼠中,从而获得多种用于研究肺癌发生与转移机制、筛选和评价抗肿瘤药物的肺癌模型。


表1: 非小细胞肺癌中基因突变频率和类型[2]

微信截图_20190610163342.png

 微信截图_20190610163409.png


1) Kras突变肺癌模型

野生型Kras激活/失活效应是受控的,而突变型Kras蛋白功能异常,持续处于激活状态,导致肿瘤细胞的持续增殖。Kras突变的肿瘤细胞比其他肿瘤细胞更容易存活,因此Kras突变的肺癌治疗也一直是医学界的一个难题。

目前国际上应用最广泛的肺癌动物模型就是Kras-LSL-G12D小鼠模型,可以通过与肺上皮细胞特异性的Cre转基因小鼠杂交来实现Kras突变体的激活,从而导致肺癌的发生。有研究表明[3,4,5],通过SPC-Cre小鼠与Kras-LSL-G12D小鼠杂交,从而获得了从肺部炎性反应到肺腺瘤进展时程较长的慢性自发肺部肿瘤小鼠模型。Kras-G12D诱导的肺癌模型为肺癌病因的研究提供了更长的窗口期,也为Kras突变的肺癌治疗提供了更有力的研究工具。

Kras-LSL-G12D还经常和其它癌症驱动基因联用,用来满足更多的肺癌研究需求。

在人类NSCLC中经常发现Kras-G12D突变和Lkb1缺失同时出现,而小鼠中Kras- G12D突变伴随Lkb1缺失会加速肺肿瘤发展,恶性程度也会更高,出现多样的表型特征,包括鳞状细胞癌和大细胞癌[6]。Kras-G12D突变并发激活Wnt /β-Catenin信号会增加侵袭性和远端组织感染[7]。Kras-G12D突变伴随p53失活导致侵袭性增加,也发生转移现象,这可能是p53的缺失导致基因组的不稳定,从而导致肿瘤恶性化[8,9]。

2) EGFR突变肺癌模型

表皮生长因子受体(epidermal growth factor receptor,EGFR)在细胞增殖和分化中起到重要作用,是目前最重要的靶向治疗靶点之一。突变后导致蛋白功能异常,持续处于激活状态,导致肿瘤细胞的持续增殖。针对其敏感突变的EGFR酪氨酸激酶抑制剂(TKI),是治疗NSCLC最常用的靶向药物,EGFR-TKI疗效好和副作用少,为很多肺癌患者带来希望,是肺癌治疗中的突破性进展。但是靶向治疗也有其自身的弊端,几乎所有的EGFR-TKI治疗患者最终均产生获得性耐药:第一代和第二代靶向药治疗后出现T790M耐药性突变,第三代靶向药治疗后出现C797S耐药性突变。由此催生了多种携带耐药性突变的EGFR肺癌模型,可用于新药的研发和肿瘤耐药性的研究因此目前也有很多EGFR突变的肺癌肿瘤,用于新药的研发以及肿瘤耐药性研究。

和Kras-G12D突变引起的局灶性肿瘤不同,EGFR-L858R突变引起的是类似于支气管肺泡的弥漫性肿瘤,EGFR外显子19的缺失引起多灶性腺癌[10]。并且研究发现,EGFR-T790M突变小鼠以及EGFR-L858R+T790M突变小鼠比EGFR-L858R突变小鼠的肿瘤潜伏期要更长,适用于耐药性机制研究[11]。

3) ALK基因重排肺癌模型

ALK编码酪氨酸受体,在正常肺中不表达,但是在约5%的非小细胞肺癌患者中会表达EML4-ALK,EML4-ALK是由于染色体倒位形成EML4基因与ALK 基因的重排,EML4-ALK的表达促使肺癌发生和恶化,是目前的靶向治疗的热门靶点之一[12]。EML4-ALK融合常见于年轻患者以及轻度吸烟或不吸烟者,并且EML4-ALK与Kras以及EGFR突变相互排斥,基本不同时出现[13]。

研究表明,肺特异性表达EML4-ALK的小鼠出生后不久发生多发性肺腺癌,为研究ALK靶向抑制剂(ALK-TKI)的敏感性以及耐药性提供合适模型,并且也为ALK-TKI的临床前药物筛选提供有力工具[14,15]。

 

4) 其它肺癌模型

除了以上3类小鼠模型,还有其他基于驱动突变导致的肺癌研究模型,如PIK3CA-H1047R突变小鼠可发生具有支气管肺泡特征的腺癌[16],Braf-V600E突变小鼠可发生腺瘤(很少进展为腺癌)[17]。

 

表2:非小细胞肺癌模型汇总

微信截图_20190610143343.png

小细胞肺癌模型

小细胞肺癌是一种侵袭性强、难以治疗的癌症类型,约占全部肺癌病例的13-15%。具有转移速度快、恶性程度高、预后情况差等特征,属于恶性程度极高内分泌肿瘤[22]。

在小细胞肺癌中,最常出现的驱动突变是Rb和p53的基因功能缺失,因此SCLC动物模型中通常使用Rbflox小鼠,p53 flox小鼠和肺部特异性Cre小鼠进行交配获得。Rb和p53的同时特异性敲除后,SCLC的肿瘤发生率很高,并且肿瘤和人类肿瘤相似度很高,也能转移到特定的组织,但是整个周期比较长,大约9个月[23]。因此通常会加入一些其他突变基因加速肿瘤发生,例如Rb,p53和Ppten同时的组织敲除[24],Rb,p53和p130同时敲除[25],Rb和p53敲除同时过表Lmyc和Nfib[1],均可加速肿瘤发生。


以上是目前常用的小鼠基因工程肺癌模型汇总。


南模生物研发了一系列的携带经典肺癌驱动突变的基因工程小鼠模型,在肺癌发生机制研究以及肺癌药物的临床前筛选方面具有潜在的应用价值。

如果您有以下模型方面的需求,欢迎随时咨询。


表3:南模生物已有肺癌相关模型汇总

微信截图_20190610150225.png


参考文献:

[1] Min-chul Kwon, Anton Berns. Mouse models for lung cancer. MOLECULAR ONCOLOGY 7 (2013) 165e177.

[2]Lovly, C., L. Horn, W. Pao. 2018. Molecular Profiling of Lung Cancer.My Cancer Genome.

[3] Jackson, E.L., Willis, N., Mercer, K., Bronson, R.T., Crowley, D.,Montoya, R., Jacks, T., Tuveson, D.A., 2001. Analysis oflung tumor initiation and progression using conditionalexpression of oncogenic K-ras. Genes Dev. 15, 3243e3248.

[4]Johnson,L.,Mercer,K.,Greenbaum,D.,Bronson,R.T.,Crowley,D.,Tuveson, D.A., Jacks, T., 2001. Somatic activation of the K-rasoncogene causes early onset lung cancer in mice. Nature 410(6832), 1111e1116. http://dx.doi.org/10.1038/35074129.

[5] 高昆,刘学丽,高珊等.SPC-CRE-Kras 双阳性转基因小鼠自发肺部肿瘤模型的建立[J].中国比较医学杂志,2013,23(7):11-15.

[6] Ji, H., Ramsey, M.R., Hayes, D.N., Fan, C., McNamara, K.,Kozlowski, P., Torrice, C., Wu, M.C., Shimamura, T.,Perera, S.A., et al., 2007. LKB1 modulates lung cancerdifferentiation and metastasis. Nature 448, 807e810.

[7] Pacheco-Pinedo, E.C., Durham, A.C., Stewart, K.M., Goss, A.M.,Lu, M.M., Demayo, F.J., Morrisey, E.E., 2011. Wnt/b-cateninsignaling accelerates mouse lung tumorigenesis by imposinganembryonic distalprogenitorphenotypeon lung epithelium.J. Clin. Invest. 121, 1935e1945.

[8]Kasinski, A.L., Slack, F.J., 2012. miRNA-34 prevents cancerinitiation and progression in a therapeutically resistant K-rasand p53-induced mouse model of lung adenocarcinoma.Cancer Res. 72, 5576e5587.

[9] Winslow, M.M., Dayton, T.L., Verhaak, R.G.W., Kim-Kiselak, C.,Snyder, E.L., Feldser, D.M., Hubbard, D.D., DuPage, M.J.,Whittaker, C.A., Hoersch, S., et al., 2011. Suppression of lungadenocarcinoma progression by Nkx2-1. Nature 473, 101e104.

[10] Regales, L., Balak, M.N., Gong, Y., Politi, K., Sawai, A., Le, C.,Koutcher, J.A., Solit, D.B., Rosen, N., Zakowski, M.F., et al2007. Development of new mouse lung tumor modelsexpressing EGFR T790M mutants associated with clinicalresistance to kinase inhibitors. PLoS ONE 2, e810.

[11] Regales, L., Gong, Y., Shen, R., de Stanchina, E., Vivanco, I.Goel, A., Koutcher, J.A., Spassova, M., Ouerfelli, O.,Mellinghoff, I.K., et al., 2009. Dual targeting of EGFR canovercome a major drug resistance mutation in mousemodels of EGFR mutant lung cancer. J. Clin. Invest. 1193000e3010.

[12] Soda, M., Choi, Y.L., Enomoto, M., Takada, S., Yamashita, Y.,Ishikawa, S., Fujiwara, S.-I., Watanabe, H., Kurashina, K.,Hatanaka, H., et al., 2007. Identification of the transformingEML4-ALK fusion gene in non-small-cell lung cancer. Nature448, 561e566.

[13] Gerber, D.E., Minna, J.D., 2010. ALK inhibition for non-small celllung cancer: from discovery to therapy in record time. CancerCell 18, 548e551.

[14] Soda, M., Takada, S., Takeuchi, K., Choi, Y.L., Enomoto, M.,Ueno, T., Haruta, H., Hamada, T., Yamashita, Y., Ishikawa, Y.,et al., 2008. A mouse model for EML4-ALK-positive lungcancer. Proc. Natl. Acad. Sci. USA 105, 19893e19897.

[15] KyoungHoPyo, SunMinLim, HyeRyunKim. Establishment of a Conditional Transgenic MouseModel Recapitulating EML4-ALK–Positive HumanNon–Small Cell Lung Cancer.J ThoracOncol. 2017 Mar;12(3):491-500.

[16] Engelman, J.A., Chen, L., Tan, X., Crosby, K., Guimaraes, A.R.,Upadhyay, R., Maira, M., et al., 2008. Effective use of PI3Kand MEK inhibitors to treat mutant Kras G12D and PIK3CAH1047R murine lung cancers. Nat. Med. 14, 1351e1356.

[17]Dankort, D., Filenova, E., Collado, M., Serrano, M., Jones, K.,McMahon, M., 2007. A new mouse model to explore theinitiation, progression, and therapy of BRAFV600E-inducedlung tumors. Genes Dev. 21, 379e384.

[18] Li, H., Cho, S.N., Evans, C.M., Dickey, B.F., Jeong, J.-W.,Demayo, F.J., 2008. Cre-mediated recombination in mouseClara cells. Genesis 46, 300e307.

[19] Iwanaga, K., Yang, Y., Raso, M.G., Ma, L., Hanna, A.E.,Thilaganathan,N., Moghaddam, S., Evans, C.M., Li, H., Cai, W.W., et al., 2008. Pten inactivation accelerates oncogenic K-ras-initiated tumorigenesis in a mouse model of lung cancer.Cancer Res. 68, 1119e1127.

[20] Ceteci, F., Xu, J., Ceteci, S., Zanucco, E., Thakur, C., Rapp, U.R.,2011. Conditional expression of oncogenic C-RAF in mousepulmonary epithelial cells reveals differential tumorigenesisand induction of autophagy leading to tumor regression.Neoplasia 13, 1005e1018.

[21] Politi, K., Zakowski, M.F., Fan, P.-D., Schonfeld, E.A., Pao, W.,Varmus, H.E.,2006.Lungadenocarcinomas inducedinmicebymutant EGF receptors found in human lung cancers respondto a tyrosine kinase inhibitor or to down-regulation of thereceptors. Genes Dev. 20, 1496e1510.

[22]Kalemkerian, G.P., 2011. Advances in the treatment of small-celllung cancer. Semin. Respir. Crit. Care Med. 32, 94e101.

[23]Dooley,A.L.,Winslow,M.M.,Chiang,D.Y.,Banerji,S.,Stransky,N.,Dayton, T.L., Snyder, E.L., Senna, S., Whittaker, C.A.,Bronson, R.T., et al., 2011. Nuclear factor I/B is an oncogene insmall cell lung cancer. Genes Dev. 25, 1470e1475.

[24] Song, H., Yao, E., Lin, C., Gacayan, R., Chen, M.-H., Chuang, P.-T.2012. Functional characterization of pulmonaryneuroendocrine cells in lung development, injury, andtumorigenesis. Proc. Natl. Acad. Sci. USA 109, 17531e17536.

[25] Schaffer, B.E., Park, K.-S., Yiu, G., Conklin, J.F., Lin, C.,Burkhart, D.L., Karnezis, A.N., Sweet-Cordero, E.A., Sage, J.,2010. Loss of p130 accelerates tumor development in a mousemodel for human small-cell lung carcinoma. Cancer Res. 70,3877e3883.



你也可能感兴趣

Tamoxifen诱导Cre-ERT2小鼠 使用指南

Cre-ERT2在无Tamoxifen诱导的情况下,在细胞质内处于无活性状态;当Tamoxifen诱导后,Tamoxifen的代谢产物4-OHT(雌激素类似物)与ERT结合,可使Cre-ERT2进核发挥Cre重组酶活性。

查看
【小鼠大学问】基因工程小鼠的命名规则

常见的基因工程小鼠可以分为两种命名方式,包括基因定点修饰的小鼠命名,比如:敲除、敲入、点突变等等,和随机转基因的小鼠命名。

查看